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S u m m a r y .  The current-voltage equations for double, triple, and quadruple membrane 
systems are derived in closed form from the flow equations of irreversible thermodynamics. 
Numerical examples show that the behavior of these systems is very similar to that of 
nerve and muscle membranes. Multiple membrane systems exhibit resting potentials 
which do not have a characteristic Nernst concentration dependence; nonpermeant ions 
play a significant role in this nonlogarithmic behavior. Furthermore, multiple membrane 
systems have rectification properties similar to those of biological membranes. The 
direction of rectification is determined by the polarity of the membrane systems, not 
by the ionic concentrations in the bathing solutions. 

The non-Nernst concentration dependence of resting potentials and the 
rectification properties of nerve and muscle membranes apparently cannot 

be analyzed by a straightforward application of the integrated form of the 

phenomenological equations of irreversible thermodynamics, in which the 

flows are given as linear functions of the differences of the forces across 

the membrane. However, this limitation lies not within the thermodynamic 

equations themselves, but with an assumption implicit in their application: 

that the membrane is homogeneous. There is no doubt  that biological 

membranes are not homogeneous. The mathematical difficulties inherent 
in a calculation of the current-voltage behavior of an inhomogeneous mem- 

brane appear to preclude simple analytical solutions. Nevertheless, inhomo- 

geneous membranes can be approximated by complex structures built up 

of discrete homogeneous components. In such a model the linear flow 

equations can be applied to each component, and the overall behavior of 
the system found algebraically. In this paper we shall consider inhomogeneous 
membranes which are systems of components arranged in series array: 

i.e., the membrane is a sandwich of several different permselective compo- 
nents. 

�9 ~ P r e s e n t  address:  Cardiovascular Research Institute, University of California, S.F., 
San Francisco, California 94122. 
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The flows of nonelectrolytes and water through bimembrane systems 
have been analyzed by Paflak, Goldstein, and Hoffman (1963) and more 
recently by Mikulecky in the Appendix to Sha'afi, Rich, Mikulecky, and 
Solomon (1970). Tasaki and Takenada (1964) proposed that their measure- 
ments of resting potentials, which did not vary logarithmically with con- 
centration, might be explained by potentials across unstirred layers next 
to the membrane. In effect, they proposed a triple membrane system with 
the stagnant layers as two components. In a later article Singer and Tasaki 
(1968) proposed a composite membrane with an external layer containing 
a high density of negative fixed-charge sites and an internal layer with rela- 
tively few fixed anionic sites. In a fundamental paper on the permeability 
of composite membranes, Kedem and Katchalsky (1963) derived the overall 
practical parameters for membranes in series array. With these parameters 
it is possible to calculate the voltage behavior of a composite membrane. 
However, this behavior is not immediately apparent from the parameters 
themselves. An explicit current-voltage function given in terms of quantities 
measured in the external bathing solutions is not presented; the calculations 
required are not straightforward. In later discussions of rectification in 
biological membranes, Katchalsky (1967, 1968) presented the current- 
voltage function for a bimembrane, given as Eqs. (11) and (13) in the follow- 
ing section. This solution, as it stands, does not indicate that the permeabil- 
ities co ~ and co ~ appearing in Eq. (13) are functions of C*, the concentration 
between the two components making up the bimembrane, and are therefore 
current dependent. Here, in an extension of this basic work, I shall derive 
the current-voltage equation in a more explicit form and present numerical 
evaluations of several multiple membrane systems bearing a strong resem- 
blance in their behavior to nerve and muscle membranes. Equations for 
double, triple, and quadruple membrane arrays are derived. 1 The analysis 
is based upon the assumption that the membrane potential is determined 
by the distribution of a mono-monovalent salt; bi-ionic potentials are not 
considered. This is not to imply that biological membrane potentials may 
not arise from the interdiffusion of two salts, but is to simplify the system 
in order to demonstrate unequivocally that membrane structure itself may 
give rise to unusual and unexpected potentials. It will also be shown that 
the presence of nonpermeant ions may have a strong effect upon 
membrane potentials. In the numerical examples sodium represents 
nonpermeant cations. Water flow through the membrane is assumed to be 
negligible. 

1 In these derivations it is assumed that the reader is familiar with the Kedem-Katchalsky 
notation. 
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The picture of the biological membrane as it is drawn by the accretion 
of data from researches in many diverse fields is one of constantly increasing 
complexity. The analysis offered here takes no account of the dynamic 
structural changes and chemical processes occurring in biological mem- 
branes and is thus limited in scope. Nevertheless, it should be of some value 
to see that seemingly complex behavior may arise in membranes composed 
of simple passive components. 

Rectification in Salt Systems 

In multiple membrane systems, rectification occurs because of differences 
in the transport properties of the components making up a series system. It 
is a fundamental property of the membrane, not of the bathing solutions, 
in that the membrane alone determines the direction of rectification. To 
show clearly that rectification per se in these systems is not a property of the 
ionic concentrations in the bathing solutions, we shall initially consider 
salt systems rather than ionic (colloidal) systems, where nonpermeant ions 
are present in the bathing solutions. Therefore, to start we shall consider 
the rectification properties of a multiple membrane system separating two 
solutions of a neutral mono-monovalent salt, such as KC1. A general current- 
voltage equation for ionic systems will be derived in the following section. 

Rectification in a Double Membrane  

The first multiple membrane system to be analyzed is the double mem- 
brane, or bimembrane, as depicted in Fig. 1 a. The two components of the 
composite membrane are labeled e and ft. They are each homogeneous 
and have a uniform distribution of fixed-charge sites. The physical properties 
determining the flows through each component are specified by the practical 

parameters, ~o, ~:, and zl. Since the analysis will be limited to those biological 
membranes for which the assumption of negligible water flow is reasonable, 
the steady-state equations for the salt flow and the current through either 
component of the bimembrane are 

i 
~ri i ~  i - -  "f l  r i  
Ors = ( - 0  Z l g s - t - - - f f - 1  ( 1 )  

and 
i i 

r i  If. "C 1 _ i - -  i ~ i  
I =----F~al~-t-x lz, i=cqfl. (2) 

The superscripts refer to the particular membrane component under con- 
sideration. By convention the differences A #~, A ~ ,  and E i are taken from 
15 J.  M e m b r a n e  Biol. 8 
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Fig. 1. (a) Double membrane or bimembrane. (b) Triple membrane. (e) Quadruple 
membrane 

left to right: e.g., 

and 
A = 2R r ( C s -  c*) (3) 

A# =2RTln C* C]'' (4) 

The superscript I refers to region I on the left of membrane e, and the super- 
script �9 refers to the space between the two components c~ and/7. This space 
is merely a mathematical device which allows us to express all forces as dif- 

ferences of potentials evaluated in aqueous solution. It has no physical 
significance. The electrochemical potentials in the intermembrane aqueous 
region are set equal to the actual values in the membrane phase at the inter- 
face between the two components. This use of an equivalent system is 
analogous to the method of images in electrostatics. There the image charge 
does not actually exist, and likewise the intermembrane aqueous region does 

not exist. 
The two flow equations depend upon the salt concentration and the volt- 

age in the region �9 between the two components, and these are unknown 
quantities. The only data available for determining the overall flows through 
the bimembrane system are the concentrations CJ and C, ~ and the total 
potential drop E between regions I and II. Nevertheless, the intermembrane 
concentration can be calculated using the practical equations for each 
separate component and then making use of the continuity of the flows. 
By continuity we mean that at all points of the system a flow has the same 
magnitude and direction; this is a consequence of being in steady state in a 
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one-dimensional system. In other words, as time increases there can be no 
accumulation of salt or charge between components ~ and t ;  therefore, 
the flow into the intermembrane region through membrane component 
must equal the flow out through component ft. We have 

J;= S~ =4 (5) 
and 

U=Ia=I. (6) 

The analysis depends upon one additional fact: the forces across the 
complete membrane system are equal to the sum of the forces across its 
components: e.g., 

~ =~ ~+A ~. (7) 

This follows from Eq. (3). Similarly, the emf E and the difference in the 
chemical potential A/~s are found by summing across the membrane com- 
ponents. 

The current equation (2) is in terms of an emf determined by electrodes 
reversible to the anion. Electrophysiological data is often presented in terms 
of A ~,, the emf determined by calomel electrodes; for this data we write 
Eq. (2) as 

1 1 ~ ~ ~ A ~ ) + A r  (8) I -~- =-if- (zl A # 1  - -  ~'2 

where A #~ is the concentration-dependent part of the electrochemical 
potential. This follows from the fact that E'=  - A  fi~/F. 

There is a similar current equation for the fl component. Summing these 
two equations gives the important result 

1 ~ ~ ~ ~ p /~ 
A ~ = I p - T ( z  ~ A,u 1 -'c2 A p2 q-'cl A#I -'c2 A #2 ) (9) 

where we have introduced the notation 

1 1 
p = -~- + -~-. (10) 

Since here there are no charged species in the bathing solutions aside from 
the mobile salt ions, electro-neutrality dictates that A #~ =A/~_; Eq. (9) 
can be simplified to 

n Cl p C~* RT [(2r~-1) 1 ~v+(2z l -1 ) ln - -~- t ]  (11) 
Ag'=IP--T- cs Us J 

where C* is as yet undetermined. In the following paragraphs we shall see 
that C* is a function of the current, and thus by Eq. (11), A ~ is a nonlinear 
function of L 

15" 



224 I.W. Richardson: 

To determine the value of the intermembrane concentration C*, we 
use the continuity of salt flow, Eq. (5). Recalling that A r~ = A n~ + A n~, we 
sum the flow equations (1) for salt flow through components e and fl to 
obtain 

1 r i iz~ -c~ vI a:- 
1 1 Arc '+Tl~og'+dJ] ' ' - -  - - ' "  [ (12) 

O) a Ok # 

We set this expression for J~ equal to J~ as given by Eq. (1) and solve this 
equation for A z~. Finally, we can determine C* because A 7r~ =2RT(C] - C*). 

Hence, 

,  o c' +Jc'J s (13) 
C~-  09~+ J 2RTF og~+d " 

From the natural condition C* > 0, we see that I must be bounded. It is 
demonstrated that the bimembrane system rectifies and that the direction 
of rectification depends upon the signs of the fixed charges in the components 
since the magnitudes of ~ and z{ depend primarily upon fixed-charge 
polarity. Eq. (13) can be used in Eq. (11) to obtain the current-voltage equa- 
tion for a bimembrane. It must be stressed that Eq. (13), as it stands, is 
not an explicit solution for C*; the practical parameters, as shown in Kedem 
and Katchalsky (1963) and Richardson (1971), are functions of the salt 
concentrations of the external solutions. For example, ~ and z~ are functions 
of C~ and C*. To obtain the quantitative results presented in the discussion 
on rectification in biological systems, Eq. (13) was solved numerically. 

Rectification in a Triple Membrane 

The triple membrane system has two intermembrane concentrations (7* 
and C**, which must be determined in order to evaluate the emf A ~, across 
the complete system. As shown in Fig. 1 b, the component membranes are 
labeled ~, t ,  and 7. The same calculation scheme as used in the preceding 
section will be used here; the calculations here will be abbreviated. The salt 
flow through each component is given by Eq. (1). By summing the salt flow 
equations for all three components, we find 

o)  P co 

where the summation over the index i is a sum over components e, fi, and 7. 
Equating J, as given by Eq. (14) to Yff as given by Eq. (1) gives an expression 
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for A ~.  Since A ~ = 2 R T ( C J -  C*), we can solve this expression for 

, 1 co'Z - 1  t H I (T1-~1 + Za-vl  ]]  (15) 
Cs - 1 Cs + C~ 2RTF \ - J ~  ~ ]  1" 

co~ Z - -  
coi 

By considering Jr  we can find the analogous equation for C**. F rom the 
natural conditions C* > 0  and C* * =0,  we see that  it is possible for the triple 
membrane to be a double rectifier; that is, it is possible for the current to 
be bounded from above and below. Similar to Eq. (11), the current-voltage 
equation is 

Ip = 1  S(2v] - 1) A #~ + A ~/ (16) 

2; 1 and the summations run over all three components.  where p = ~c i 

Rectification in a Quadruple Membrane 

Although this system is complex, its properties are interesting, and it is 
perhaps no more complicated than the elementary structure of an axon 
membrane for which it might  serve as a model. A diagram of the quadruple 
membrane is presented in Fig. 1 c. The equations derived in the section on 
triple membranes are actually general equations which can be extended to 
systems comprised of any number  of components.  Here the summations 
will now run over ~,/~, 7, and ~. Since they have the exact form of the preced- 
ing equations, the expressions for C*, C**, and C*** will not  be presented. 

Like the triple membrane it is possible for the quadruple membrane 
system to be a double rectifier. The current-voltage equation is Eq. (16) 
with the summation going over all four components.  It must  be stressed 
again that  these solutions are not  reductions to closed form;  the practical 
parameters co and ~1 are functions of the intermembrane concentrations. 
Solutions are achieved numerically. 

Rectification in Ionic Systems 

The practical parameters co and Zl are concentration dependent, and 
this greatly complicates any analysis of multiple membrane systems using 
the practical equation for salt flow because the intermembrane concentra- 
tions depend upon the current. Fig. 3 shows that the variation of co is signif- 
icant and cannot  be ignored; but  v~ is very nearly either unity or zero, 
depending upon the sign of the fixed charges. Therefore, we can safely 
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put r~ =1 or "q =0 in our calculations. And under this condition we can 
solve the current-voltage equation in closed form for a system of any number 
of components. 

The Current-Voltage Equation for a Double Membrane 
The equation for the cation flow through a single homogeneous mem- 

brane separating two ionic solutions has been derived in an earlier paper 
(Richardson, 1971). The cation flow through the c~ component is given as 

where 

, I (17) = 

U-  (a~RT (18) 

and fi,, =f2 w if the c~ component is negatively charged or f~,~ =f l  w if it is 
positively charged. The same convention holds forf~m. Also, z~ takes the 
values 1 or 0, respectively. There is a similar equation for the fl component. 
From the steady state condition J[=J{ we obtain 

C . 2 -  z l - z {  (I-Io) (19) 
(Z~+ff)V 

where the limiting current I0 is 

I o =I(C] ~ =0) 

+ 
='= f .  

(20) 

The condition C* 2 >0 implies that I is bounded, and the sign of the dif- 
ference ( r l - r { )  determines whether/ is  bounded from above or below. The 
limiting current Io is this bound; the bimembrane is a rectifier. We see that 
the direction of rectification does not depend upon the values of the ionic 
concentrations in the bathing solutions but upon the signs of the fixed- 
charge groups in the two components. It is possible for a bimembrane to 
rectify in the direction of decreasing salt concentration; thus the bimembrane 
may exhibit anomalous rectification. 

By Eq. (9) we finally obtain the current-voltage equation for a bimem- 
brahe: 

A~=A~to+lp+~-(z~i-z~)ln (1- f-~) (21) 
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where the resting potential is 

A ~o =_ff _RT L[ln -~-+%c2C'2 ~ In 2~ (2~ + 2z) C ~ c] C~ + ff C~ IC IC~ z~ln /]'~ (/~e_{._ ~p) CI I cl  "J2 t''I "-1- ,'~]P v'IF'IIcI2 l'-'2"qI '] . (22) 

The potential A ~ across the bimembrane is made up of three contributions: 
(1) the resting potential A 00, (2) a linear portion Ip, and (3) a nonlinear 
portion which becomes infinite as I approaches the limiting value Io. 

Eq. (21) gives an adequate representation of the current-voltage behavior 
of multiple membrane systems made up of ion-exchanger membranes 
(Y. Katz, unpublished results). Using the Nernst-Planck equation for ion flow, 
Spiegler (1971) has recently investigated the limiting currents which occur 
in electrodialysis stacks. He considered a system consisting of an ion-ex- 
changer membrane and its two boundary layers and arrived at a current- 
voltage equation similar to Eq. (21), with a linear resistive term and two 
logarithmic terms. From the viewpoint of the present analysis the two log 
terms occur because his membrane system is composed of three components, 
having two interfaces separating components of differing transference 
numbers. Spiegler points out that a complete description of limiting currents 
in electrodialysis stacks must take into account side effects such as water- 
splitting. 

The Current-Voltage Equation for Triple and Quadruple Membranes 

In a triple membrane system there are three cation flow equations 
[see Eq. (17)]; the steady-state condition is J~=J~=J~=J1. We combine 
these equations to obtain 

I 
J~ =2(C] C~ - C]' C~) +u -~- (23) 

where 

z= S and 3 I= S S i=~,fl,~. (24) 
\ 21  2 '  

The cation flow through the composite membrane is thus given as a function 
of measurable quantities (the current and the ionic concentrations in the 
bathing solutions) and has the same form as the flow equation for a single 
membrane. This expression for J1 is equated to that for J~ and C* determined 
as a function of the measurable quantities. We obtain 

. 2 -  ( / - I * )  (25) 
2~F 



228 I.W. Richardson: 

where the limiting current for the intermembrane region is 

C1 C2) F. I~- U C] C~-2(C] CI- H II 

%1 --T1 

In the same manner we find 

C , . 2  z~i-~i (I-I**) 

where 

(26) 

(27) 

- e l  C2) F. (28) I o - -  

These intermembrane concentrations are then put into Eq. (9) to give a 
current-voltage equation in closed form similar to Eq. (21). 

Eqs. (27) and (28)are recursion formulas which can be used to find the 
intermembrane concentrations for a multiple membrane system of any num- 
ber of components. The current-voltage equation will have the form of 
Eq. (21) with a In (1-I/Io) term for each intermembrane region. As the 
algebra is straightforward, the quadruple membrane equations will not be 
presented. 

Rectification in Biological Systems 

Rectification is a well-established phenomenon in muscle and nerve 
membranes; the membrane exhibits nonlinear and asymmetric behavior in 
that the resistance of the membrane depends upon the direction and the 
magnitude of the current (Cole & Baker, 1941). As a possible explanation 
for their rectification curves in frog muscle, Adrian and Freygang (1962) 
proposed a multiple barrier, one component of which exhibited anomalous 
rectification. In experiments with muscle bathed in artificial seawater which 
had all sodium replaced by potassium, Gilbert and Ehrenstein (1966) found 
that the current was limited in both the positive and negative direction: 
i.e., the muscle was a double rectifier. 

In our analysis we have already demonstrated that bimembranes rectify 
in one direction and that triple and quadruple membranes can be double 
rectifiers. To illustrate more concretely the current-voltage behavior of 
multiple membrane systems, several numerical example are presented. The 
system parameters chosen for these examples are of the order of magnitude 
of those found in biological membranes; however, no attempt is made to 
fit biological data exactly by a variation of the rather large number of 
parameters specifying the system. 
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Fig. 2. Rectification in bimembranes. All cases: cO= C~ = 10 -s M/cmZ; C~:= C+,= 
3.5 x 10 .4 M/cm 3. Case II: Fixed charge density is twice that of Case I. Case III: Structural 
polarity is reverse that of Case I. The current is given as amps per cmz of aqueous channel 

By presenting several multiple membrane systems with reasonable, but 
rather arbitrarily chosen, physical properties, we shall demonstrate that 
these models offer a possible explanation for experimental observations. 
In this manner it will be possible to determine in what ways a biological 
membrane resembles a single, double, triple, or quadruple membrane system. 
We shall assume that the membrane components are permeable solely to 
potassium and chloride ions. The single homogeneous membrane can be 
immediately discarded since it neither fits the concentration-dependent 
behavior of the resting potential nor predicts rectification. In our formula- 
tion the Nernst equation represents the steady-state potential of a single 
very highly charged negative membrane; it is just Eq. (8) with % =0. 

There are several reasons to suspect that biological membranes are 
highly charged, but a detailed discussion of this particular subject is outside 
the scope of this paper. The practical parameters and the ionic flow equations 
derived in Kedem and Katchalsky (1963) and Richardson (1971) are restricted 
to highly charged membranes. We shall make the assumption of high charge 
density in the membrane components and then see in what way these 
membrane systems resemble biological membranes. 

In this discussion of rectification, we consider bathing solutions of potas- 
sium chloride with no nonpermeant ions present. The friction between 
water and the mobile ions is the only one considered. The current is given 
as amperes per square centimeter of aqueous channel in the membrane. 
Using the following expression for the conductance, 

FZX 
~:= o (29) 

f twAx 
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Fig. 3. Intermembrane concentration C*, permeabilities co = and ~oa, and transference 
numbers r~ and vq as a function of the current for the bimembrane given in Case I, Fig. 2. 

The current is given as amps per cm z of aqueous channel 
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Fig. 4. Rectification in a triple membrane. CaseI: C ~  C~ 3.5 x 10 -4 M/cm3; C~:= C~]= 
3.5X 10-4M/Cm 3. CaseII: C~=~ Ccl=O 10-5 M/cm3; CI~=" C~l=3.5X 10-4M/Cm 3. T h e  

current is given as amps per cm 2 of aqueous channel 

i - -1  or 2 depending u p o n  whether  the c o m p o n e n t  is negative  or posit ive,  

the curves in Figs. 2, 3, and 4 were calculated using a numerical  computer  

program.  The magni tude  of the f ixed-charge concentrat ion  was  set at 

X =  3 x 10-  3 M/cm a in the calculat ions.  This unusual ly  large value  is Passow's  

(1969) "ef fect ive"  concentra t ion  for erythrocyte  membranes .  The  thickness  

of  each c o m p o n e n t  was  set at A x = 2  x 10 -6 cm.  
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Two practical parameters, the permeability and the transference number, 
are functions of external concentrations. In a multiple membrane system 
this means that they depend upon the values of the intermembrane concen- 
trations, which in turn are functions of the current through the system. 
Fig. 3 shows the dependence of these parameters and of the intermembrane 
concentration upon the current. It also shows that the assumption that z~ 
is nearly unity for a highly charged negative membrane is valid. Therefore, 
the numerical calculation shows that we can safely use the closed-form I 
vs. A • [Eq. (21)], with zl assuming values of 1 or 0. 

Resting Potentials in Ionic Systems 

The resting potential for any multiple membrane system is given by the 
appropriate current-voltage equation from the penultimate section under 
the condition that I =  0. For clarity and simplicity in the numerical examples, 
2 will, in general, assume the same value for all membrane components in a 
system. This would be the case for the permeation of KC1 through water- 
swollen components of equal thickness and with equal fixed-charge densities 
(with differing signs, however). The membrane-solute friction would be 
negligible; andfsw is the same for K and C1 ions in free solution. 

The resting potential for a double membrane is given explicitly by Eq. (22). 
For a triple membrane with 2~= i f =  2 r we can use Eq. (25) to obtain 

and similarly we have 

c* 2 _ 2c ]  c~ + ,_.,'" ~z"" 
3 ' (30) 

t Z b  I b 2 c :*  2_ c~ c~ o~I, ~,~ 
3 (31) 

These values of the intermembrane concentrations are then used in Eq. (9) 
to obtain A ~0 for I =  0. In the quadruple membrane we have 

C : 2  - -  3 C I  C l  -~- ~-~1FII '~2/'~I1 
4 (32) 

and 

__ t D% 1 I-, 2 C;~** ~ C~ C~ ' " " "  " "  
4 (33) 

c:,~_ c : ~ + c  ***~ 
2 (34) 
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The Resting Potential in Biological Systems 

Early measurements of biological potentials, determined as injury poten- 
tials or by the insertion of micro-electrodes, were found to be in reasonable 
agreement with values predicted by the Nernst equation if it were assumed 
that the resting potential was determined by the distribution of the potassium 
ions and that the membrane was impermeable to sodium ions. In a test of 
this theory, Hodgkin and Keynes (1955) varied the external potassium con- 
centration and discovered that the resting potential of an intact squid axon 
did not follow the Nernst equation but fell off rapidly below an external 
potassium concentration of 50 raM. With the advent of perfusion techniques, 
it became possible to control the internal environment. For example, in the 
experiments of Baker, Hodgkin, and Shaw (1962) the external potassium 
concentration was held fixed while the internal potassium concentration 
was varied by replacing isotonic KC1 with isotonic NaC1. Replotting their 
data on semi-log coordinates shows clearly that the resting potential does 
not follow the Nernst equation. A dramatic departure from the Nernst 
equation was offered by Tasaki and Takenada (1964), who measured both 
the resting potential and the peak of the action potential under several very 
interesting combinations of salt concentrations. 

Figs. 5 and 6 show the calculated resting potentials for two multiple 
membrane systems where the internal potassium concentration is varied by 
replacing isotonic KC1 with isotonic NaC1. If sodium is not absolutely non- 
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Fig. 5. Resting potential for a bimembrane. Potassium concentration varied by replacing 
isotonic KC1 with isotonic NaC1. Sodium assumed to be nonpermeant. Both cases: 

C 0 ---- 1 O -  5 M / c m  3 ; C O l =  6.3 3 x 10- 4 M/era  3 , C~  1 = 6.3 3 x 1 O- 4 M/cm 3 
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Fig. 6. Resting potential for a triple membrane. Potassium concentration varied by 
replacing isotonic KC1 with isotonic NaC1. Sodium assumed to be nonpermeant. All 
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permeant, caution should be taken in comparing this particular model 
calculation with physiological data since here as C~ increases from 10 raM, 
C~. decreases from 623 m~ to zero. 
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In their measurements of the resting potential, Tasaki and Takenada 
(1964) kept the relative concentrations of sodium and potassium constant: 

C~,=I/10 C~. Consequently, if sodium is slightly permeant, its relative 
contribution to the cationic flow will not vary greatly with changes in C~. 
The outer solution was sea water. For the calculation we set C ~ = 10 m u  
and Cc~ mM. Fig. 7 shows the resting potential calculated for a bi- 
membrane. Fig. 8 shows the resting potential for a triple membrane. The 

resting potential for a quadruple membrane is very similar to that of the triple 
membrane and therefore not presented. 

Symmetry and Polarity in Multiple Membrane Systems 

Hodgkin (1964) mentions that if the inner and outer solutions in a per- 
fused axon are interchanged, the sign of the resting potential reverses but the 
magnitude does not change significantly. This is a highly unnatural state 
for the axon, and perhaps this phenomenon should not be considered as a 
definite criterion for judging models for biological membranes. Nevertheless, 
it is worth noting. If, for example, in the bimembrane system given as Case II, 
Fig. 5, the inner and outer solutions at the point where C~ = 500 mM are 
interchanged, then the resting potential A ~b o goes from - 8 2  mV to + 17 mV. 
It must be concluded that the bimembrane does not fulfill the symmetry 
requirement. A triple membrane with components e and Y identical has a 
geometric symmetry which assures a reversal of the sign of the potential 
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and no change in its magnitude upon an interchange of solutions. This is 

also true of a quadruple membrane with components ~ and ~ identical and 

components ~ and ~ identical. 

The couplet of transference numbers for cations, (z~, -c~), indicates the 

structural polarity of a bimembrane. The state of polarity of Case I in Fig. 2 

is thus (1, 0), with a corresponding resting potential of A ~o = - 7 2  inV. If 

by some means the sign of the fixed charges of the two membrane components 

were interchanged, causing the state of polarity to become (0, 1), then the 

resting potential would jump to A ~o = +72 inV. Thus, in a system where 

KC1 is the only permeant salt and where CK =Ccl in the bathing solutions 

(a salt system), a reversal of polarity reverses the sign of the resting potential. 

Fig. 5 shows that in systems where nonpermeant ions are in the bathing 

solutions (ionic systems), a reversal of polarity does not necessarily reverse 

the resting potential. At C~ = 500 mM, a reversal of polarity causes the resting 

potential to jump from A ~o = - 8 2  mV to A ~0 = - 1 7  inV. In general, the 

effects of polarity reversals must be found by an examination of Eqs. (20), 

(21), and (22). 

I am deeply indebted to Prof. Aharon Katchalsky, who introduced me to the problem 
of inhomogeneous membrane systems and who provided assistance and encouragement 
during the course of the work presented in this paper. 

The final phase of this work was done at the University of California, San Francisco, 
during the tenure of a Visiting Scientist award of the American Heart Association. 
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